
E
p

O
U

a

A
R
R
A

K
E
E
F
C
S

1

c
c
a
h
b
s

b
o
t
f
b

o
e
d
i
o
u
c

1
d

Chemical Engineering Journal 151 (2009) 168–175

Contents lists available at ScienceDirect

Chemical Engineering Journal

journa l homepage: www.e lsev ier .com/ locate /ce j

lectrostatic field theory and circuit analysis in the design of coalescers with
ulsed dc voltage

le-Morten Midtgård ∗

niversity of Agder, Grooseveien 36, NO-4876 Grimstad, Norway

r t i c l e i n f o

rticle history:
eceived 19 April 2007
eceived in revised form 9 February 2009
ccepted 11 February 2009

eywords:
lectrostatic coalescence

a b s t r a c t

This paper presents a mathematical analysis of the electric field and interfacial free charge experi-
enced by the emulsion in an electrostatic coalescer that is subjected to a pulsed dc voltage. Previous
work in this area is re-assessed, but the analysis is expanded. A novel static analysis of the system is
presented, giving valuable physical insight. It becomes obvious that there must be a limited range of
frequencies that are effective in a pulsed dc scheme. Thereafter, analytical expressions for the steady-
state solution, where both the switching frequency and duty ratio (or mark space ratio) can be varied,
lectric field
ree charge
ircuit analysis
eparation

are presented for the first time. These expressions are used to derive voltage and charge profiles for
a specific example under various circumstances. In addition, a previously found criterion for opti-
mum switching frequency is analyzed, and it is found that there are actually three physical parameters
that all would show the same correlation with coalescer performance, not only charge as previously
found, but also voltage and current. An analytical expression for the correlation quantity is derived, and

ndica
the numerical example i
effective.

. Introduction

The oil extracted from offshore fields normally has high water
ontent. Much is free water, which can be separated quite easily by
yclones or gravitational settlers [1]. However, after this initial step,
water-in-oil emulsion is formed. As a bulk substance the emulsion
as high resistivity, and therefore a high intensity electric field can
e applied to further enhance separation through coalescence of
maller water droplets.

The two most important mechanisms that take place are proba-
ly dipole- and migratory coalescence. The latter is a consequence
f movement of charged water droplets under the influence of
he electric field; the droplets may have been charged by ions or
ree electrons present in the emulsion. Dipole coalescence happens
ecause of polarization of the water droplets.

A lot of work has been performed on electrostatic coalescence
ver the years. The present status has been extensively described
lsewhere [2,3]. However, the design of coalescers is notoriously
ifficult and requires a multi-disciplinary approach. This is becom-
ng increasingly true since the present trend of thought in the
il-industry is to make coalescers more compact, and place them
pstream in the process chain [4]. There seems to be a lack of
lear design criteria for such components, which hampers their

∗ Tel.: +47 37 25 32 38.
E-mail address: ole-morten.midtgard@uia.no.

385-8947/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.cej.2009.02.014
tes that there is a narrow range of frequencies and duty ratios that are

© 2009 Elsevier B.V. All rights reserved.

evolution. This raises a requirement for a better understanding of
both the fundamental physics of the micro-scale particle attrac-
tions and the nature of the electric field that is actually experienced
by the emulsion, and thereby the water droplets, under vari-
ous circumstances. Lately, work has been performed to address
the first of these issues both through experiments and numerical
means [5,6].

This paper addresses the other of these issues, that of the overall
electric field. Here, the electric field is analyzed under a scheme
where the coalescer is subjected to a pulsed dc voltage. In such a
situation, experiments show that there is a frequency dependence
of coalescer behavior [7,8]. This has previously been explained by
modeling the coalescer as a two-layer lossy dielectric, where it was
found that the optimum frequency correlated with the maximum
mean square of the variable part of the interfacial free charge in the
off-period [9,10].

In this work the two-layer capacitor model is retained, but the
analysis is expanded. Electrostatic theory is first used in order to
gain physical insight into the build-up of charge and voltage in
the system. Furthermore, circuit analysis is used for a dynamic
view of the system, and this leads to the insight that there are
actually three physical parameters that correlate with the opti-

mum frequency (assuming previous work to be correct)—not only
charge, but also the mean square of (the variable parts of) voltage
and conductive current in the off-period. This seems not to have
been mentioned in previous work, but could have some signifi-
cance.

http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:ole-morten.midtgard@uia.no
dx.doi.org/10.1016/j.cej.2009.02.014
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Fig. 2. The two-layer capacitor model of the electrostatic coalescer, and its power
O.-M. Midtgård / Chemical Eng

. Short review of the two-layer capacitor model

Bailes and Larkai carried out laboratory experiments on the
ptimization of coalescence with a device that was rectangular in
ross-section. Since its length and width was significantly larger
han its thickness, the geometry was essentially two-dimensional.
he results from the experiments were published in papers dat-
ng back to 1981 [7,8]. It was found that the success of coalescence
epended on the frequency of the applied pulsed dc voltage. The
ptimum frequency depended on the conductivity and permittivity
nd the dimensions of the insulation and emulsion.

In 1985 an electrical model of the system used by Bailes and
arkai was proposed by Joos and Snaddon [9]. They modeled the
oalescer as a two-layer capacitor, and used an appropriate model
or the power supply and switching circuitry. They solved the cir-
uit, and argued that the mean square of the voltage experienced
y the emulsion should be maximized for best coalescer perfor-
ance. However, their optimum frequency turned out to be 22 Hz

or the particular system that had been used, whereas the experi-
entally found optimum was 8 Hz. The discrepancy was explained

y uncertainties in the modeling of the emulsion.
Later, in 1995, Bailes used the model of Joos and Snaddon to come

p with a new explanation of the experimental findings [10]. He
roposed that it could be the mean square of the variable part of the
urface charge density at the interface between the emulsion and
he insulation in the off-period that was the decisive parameter. This
uantity had a distinct maximum at precisely the experimentally
ound optimum.

The experimental system used had a positive electrode that con-
isted of a flat metal plate covering the whole upper surface of the
oalescer. Then there was an insulating layer (dielectric material)
etween the electrode and the emulsion. The free water in the oil
eparated easily and formed a third layer at the bottom. The free
ater was in direct contact with the ground electrode, and was

herefore seen as part of ground. Fig. 1 schematically depicts the
ross-section of the system. The global material properties (permit-
ivity ε and conductivity �) that are indicated in the figure are well
efined for the insulation material. For the emulsion, these parame-
ers are not given once and for all; instead, they may change both in
he short- and long term since they will depend micro-scale prop-
rties of the emulsion (such as droplet diameters, droplet velocity,
roplet distribution, zeta potential and so on). However, it is reason-

ble to assume that the emulsion can be considered homogenous
nough for the global material properties to remain constant within
he time-frame for the analyses that are presented below.

Fig. 2 depicts the resulting two-layer capacitor model. The
arameters can, due to the geometry of the particular coalescer

ig. 1. Schematic representation of the system cross-section. Its three-dimensional
ature is indicated with dashed lines. The global material properties and the geomet-
ical parameters that are used in the mathematical derivations are indicated. From
hese parameters, the resistance and the capacitance of each layer can be calculated,
ith the circuit model of Fig. 2 as a result. A Gaussian surface at the interface between

nsulation and emulsion is also shown, indicating the manner in which Gauss’ law
s applied.
supply. Subscript i denotes insulation, whereas e is emulsion. The switch in the model
of the power supply changes state periodically from open, which corresponds to the
on-period, to closed, which corresponds to the off-period.

discussed, be found from the standard formulas for a parallel plate
capacitor. It should be noted that the modeling of the emulsion
is not trivial since it is actually a flowing liquid. However, for the
electric field to have an effect at all, it must be assumed that the
substance stays inside the coalescer for a sufficiently long period of
time. It is referred to the original papers for further discussions on
the validity of the model itself; here we shall take it for granted.

The power supply, also depicted in Fig. 2, is connected to the
terminals of the coalescer, and it is modeled as a voltage source
in series with a resistance, and with a switch in parallel which
periodically changes state from open to closed. The latter situation
corresponds to the off-period, and the open state to the on-period,
indicating that the source voltage is applied on the coalescer ter-
minals.

3. Analysis using electrostatic theory

3.1. Application of step voltage

In order to gain physical insight, the system is analyzed from a
static perspective in this section. We assume here that the resis-
tance R is zero, such that when the switch is open, the voltage Vdc is
directly applied on the terminals of the coalescer. Similarly, when
the switch closes the short circuit is also applied without any time-
delay. Between the state changes, we assume a sufficiently long
period of time such that a static situation is arrived at both in the
on- and off-periods.

When a step voltage is applied in this manner across a capac-
itor, the electrodes are charged instantaneously. This implies that
the current in the external circuit is a dirac-pulse, infinite in value,
but infinitesimally short in duration. Similarly, when a capacitor is
short circuited in this manner, a dirac-pulse of current redistributes
the charge on the electrodes instantaneously. This is a situation one
would try to avoid in a physical system as the stress on the com-

ponents in the circuit could be destructive. However, this kind of
analysis gives important physical insight, and we will therefore
assume that the voltage profile of v (the voltage applied on the
coalescer terminals) is as depicted in Fig. 3.



170 O.-M. Midtgård / Chemical Engineerin

F
l

b
e
a
i
t
a
r

3

Q
t
c

D

ε
p
p

e

E

c
i
s
o
s

D

D

f

Q

∇

w
C

∇

ig. 3. Idealized voltage profile applied on the terminals (electrodes) of the coa-
escer.

In the dynamic analysis presented later, the value of R will
e assumed non-zero, and a time-delay in the charging of the
lectrodes will therefore result. However, the short circuit will be
pplied in an instantaneous manner also in the dynamic analysis. It
s possible, and probably more physically correct, to include a resis-
ance also in the short-circuit branch, but since the paper includes
discussion of previously obtained results, the original model is

etained.

.2. Basic equations

Gauss’ law, one of Maxwell’s four equations, states that

S
D · dS = Q (1)

is free charge enclosed by the surface S, whereas D is the elec-
ric displacement, which is related to the electric field E via the
onstitutive equation:

= εE (2)

= ε0εr is the permittivity of the material, given as the product of the
ermittivity of free space (ε0 ≈ 8.854 × 10−12 F m−1) and the relative
ermittivity of the material in question (εr).

In a static situation, the electric field is further related to the
lectrostatic potential V through:

= −∇V (3)

In a situation such as the one modeled here, the electric field
an be considered homogenous in both the two substances. This
mplies that the electric field is simply the voltage across the sub-
tance divided by its width. Using the expression for the capacitance
f a parallel plate capacitor, the electric displacement in the two
ubstances can now be written:

i = εiEi = εi
vi

di
= Ci

A
vi (4)

e = εeEe = εe
ve

de
= Ce

A
ve (5)

Using Gauss’ law, Eq. (1), we can now find an expression for the
ree charge, Qe−i, at the emulsion–insulation interface:

e−i = (De − Di)A = Ceve − Civi (6)

The law of conservation of charge can be expressed as

· J = −∂�

∂t
(7)
here J is conduction current density and � is free charge density.
onsequently, when a static situation exists:

· J = 0 (8)
g Journal 151 (2009) 168–175

This can equivalently be expressed as

S
J · dS = 0 (9)

Furthermore, the conduction current density is related to the
electric field via:

J = �E (10)

� is conductivity. Following a similar line of reasoning as above, we
find that

Ji = �iEi = �i
vi

di
= vi

RiA
(11)

Je = �eEe = �e
ve

de
= ve

ReA
(12)

Then, using Eq. (9), we find that:

ve

Re
− vi

Ri
= 0 (13)

3.3. Application of step voltage—initial situation

If the coalescer is initially uncharged, and a step voltage v = Vdc

is then applied to its terminals (the instant denoted “step” in Fig. 3),
the voltage distribution over the substances (insulation and emul-
sion) will initially be given by their capacitances. This is because
it takes time for free charge to migrate through the physical sub-
stances to accumulate at the interface. Consequently, Qe−i is initially
zero, such that Eq. (6) results in

Ceve = Civi (14)

Since, further, v = vi + ve, it follows that

vi = Ce

Ci + Ce
Vdc and ve = Ci

Ci + Ce
Vdc (15)

3.4. Application of constant voltage—final situation

If the two substances were ideal dielectrics (zero conductivity),
Eq. (15) would continue to describe the voltage distribution. Here,
however, the non-zero conductivities strongly influence the situa-
tion since free charge starts to flow due to the applied field. If the
applied voltage is on (and constant) for a sufficiently long time, a
static situation is eventually achieved such that Eq. (13) is valid. This
corresponds to the instant denoted “static (1)” in Fig. 3. Since it is
still true that v = vi + ve, it follows that

vi = Ri

Ri + Re
Vdc and ve = Re

Ri + Re
Vdc (16)

The final interfacial free charge can then be calculated with Eq.
(6) to be

Qe−i = CeRe − CiRi

Ri + Re
Vdc (17)

Thus, depending on the material properties and the geometry
(and thereby the values of resistance and capacitance), a significant
interfacial charge has been built up from initially zero.

3.5. Application of short circuit

If the electrostatic coalescer is now short circuited (v = 0) from

the static situation above (the instant denoted “short circuit” in
Fig. 3), the charge Qe−i will – again – initially be unchanged since to
change it, free charges have to move through the substances, which
takes time. It is still true that v = vi + ve, such that vi = −ve. Since
the interfacial charge is known through Eq. (17), Eq. (6) can now
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Table 1
The table shows charges and voltages when the voltage profile of Fig. 3 is applied on
the terminals of the coalescer. The simplifying assumption Ri → ∞ is used in order
to arrive at expressions that are easy to interpret. (The full expressions are, however,
easy to derive following the methodology above.) The annotations in the first row
refer to the instants in Fig. 3.

1: step 2: static (1) 3: short circuit 4: static (2)

Qi−p
Ci

Ci+Ce
CeVdc CiVdc

Ci
Ci+Ce

CiVdc 0

Qe−i 0 −CiVdc −CiVdc 0

Qn−e
−Ci

Ci+Ce
CeVdc 0 Ci

Ci+Ce
CeVdc 0

v Vdc Vdc 0 0
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i
Ce

Ci+Ce
Vdc Vdc

Ci
Ci+Ce

Vdc 0

e
Ci

Ci+Ce
Vdc 0 −Ci

Ci+Ce
Vdc 0

e used to find the initial voltages after the short circuit has been
pplied:

i = CiRi − CeRe

(Ri + Re)(Ci + Ce)
Vdc and ve = CeRe − CiRi

(Ri + Re)(Ci + Ce)
Vdc (18)

As the short circuit lasts, the device is gradually de-charged, and
fter a sufficiently long period of time both vi and ve as well as the
nterfacial charge will be zero.

.6. Summary—static view

Similar analysis to that above can be performed for the other
wo interfaces of the coalescer: the interface between the insula-
ion and the positive electrode, and the interface between ground
nd the emulsion. In an actual coalescer design, it is likely that the
esistance of the insulation will be much higher than that of the
mulsion. If we assume an ideal dielectric (Ri → ∞), the expressions
or charges and voltages are easier to interpret without having to
esort to a numerical example. The full results with this simplify-
ng assumption are presented in Table 1. Qi−p is insulation-positive
lectrode interfacial charge, whereas Qn−e is for ground-emulsion.

Valuable physical insight is gained from this analysis: when
he voltage pulse is first applied, the voltage distributes itself over
he two layers, depending on their capacitances. It is reasonable
o assume that the insulation has significantly higher capacitance
han the emulsion. If so, most of the applied voltage will ini-

ially be distributed across the emulsion. This implies that the
lectric field will now be directed from the emulsion–insulation
nterface towards the negative electrode, such that negative free
harge will move in direction interface, and positive in direction
round electrode. Therefore, negative free charge accumulates on
he emulsion–insulation interface. As time passes, the voltage dis-
ribution changes, and eventually the voltage across the emulsion
s zero. At this point, no further charge separation takes place.

Then the short circuit is applied. The emulsion is immediately
ubjected to a negative voltage which is almost as large as Vdc,
ssuming the capacitance of the insulation dominates. The electric
eld in the emulsion will now have direction from ground elec-

�1,2 =
−[((R/Re) + 1)Ci + ((R/Ri) + 1)Ce] ±

√
[

rode towards emulsion–insulation interface, such that negative
ree charge will flow in direction ground, and positive charge in
he opposite direction. Eventually, therefore, the interface is de-
harged, and a stationary situation is arrived at where there is no
ore charge separation, and zero voltage over both layers.
g Journal 151 (2009) 168–175 171

3.7. Significance of frequency

From this analysis it becomes obvious that there is a frequency
dependence of coalescer behavior. If the frequency is too low, there
will be significant periods where nothing interesting happens in the
emulsion since the electric field will be zero both in the end of the
on- and the off-periods. Thus, state change of the switch should take
place well before the electric field becomes zero. However, migra-
tory coalescence implies movement of free charge, and therefore
state change should be slow enough to allow for sufficient charge
separation and movement; in other words, too high a frequency
should be avoided as well.

As previously mentioned, previous work has concluded with
the existence of an optimum frequency. The static analysis cannot
provide an answer to what that frequency would be. Therefore, a
dynamic analysis of the system is required. For this purpose, circuit
analysis of the system is a powerful tool.

4. Circuit analysis of the system

4.1. On-period

Kirchhoff’s current law demands that the total current i flowing
in the external circuit must flow through both layers of the coalescer
(see Fig. 2), such that

i = Ci
dvi

dt
+ vi

Ri
= Ce

dve

dt
+ ve

Ri
(19)

Kirchhoff’s voltage law yields:

−Vdc + Ri + vi + ve = 0 (20)

Combining these two equations, gives us a differential equation
for the voltage across the emulsion:

RCiCe
d2ve

dt2
+

[(
R

Re
+ 1

)
Ci +

(
R

Ri
+ 1

)
Ce

]
dve

dt
+ R + Ri + Re

RiRe
ve

= Vdc

Ri
(21)

The solution is

ve = Re

R + Ri + Re
Vdc + k1e−t/�1 + k2e−t/�2 (22)

The time constants �1 and �2 are given by the negative inverse of
the roots of the characteristic equation resulting from Eq. (21), and
they are

−2RCiCe

e) + 1)Ci + ((R/Ri) + 1)Ce]2 − 4RCiCe((R + Ri + Re)/(RiRe))
(23)

The combination of Eqs. (19), (20) and (22) gives us the solution
also for vi:

vi = Ri

R + Ri + Re
Vdc +

(
RCe

�1
− R + Re

Re

)
k1e−t/�1

+
(

RCe

�2
− R + Re

Re

)
k2e−t/�2 (24)

The constants k1 and k2 appear in both ve and vi. If the coalescer is
initially uncharged (such that both voltages are zero), the constants
are found to be

k1 = −Vdc
�2

�2 − �1

[
�1

RCe
+

(
�2 − �1

�2
− 1

)
Re

R + Ri + Re

]
(25)
k2 = Vdc
�2

�2 − �1

(
�1

RCe
− Re

R + Ri + Re

)
(26)

To use these constants in the steady-state solution would be
incorrect, unless the frequency was so low that we went into the
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Fig. 4. In the on-period, the switch is open, whereas in the off-period, the switch
72 O.-M. Midtgård / Chemical Eng

tatic phase of the off-period (see Fig. 3). We aim for a more general
olution, and this requires that we find the constants for a situation
n which vi and ve are not zero when the on-period commences. In
rder to do this, it is necessary to solve the circuit for the off-period
rst.

.2. Off-period

In the off-period, the coalescer is short circuited, such that

i = −ve (27)

t is still true that the current that flows into one terminal of the
oalescer equals the current that flows out of the other. Thus,

i
dvi

dt
+ vi

Ri
= Ce

dve

dt
+ ve

Ri
(28)

he differential equation for ve then becomes:

dve

dt
= −ve

Re + Ri

(Ci + Ce)RiRe
= − ve

�OFF
(29)

OFF is the relaxation time constant, and can also be expressed in
erms of the material properties and thicknesses of the substances
using the formulas for resistance and capacitance of a parallel plate
apacitor):

OFF = (Ci + Ce)RiRe

Re + Ri
= εidi + εede

�ide + �edi
(30)

he solution of Eq. (29) is

e = ve0e−t/�OFF (31)

here ve0 is the initial value of ve just after the short circuit has
een applied.

To find ve0, we use the fact that the interfacial charge Qe−i does
ot change instantaneously; in other words, it must be the same

ust before and just after the short circuit. We denote these two
nstants 0− and 0+, respectively, and use Eq. (6) to set up the fol-
owing expression, where we have also introduced the superscripts
N and OFF on the voltages to distinguish between the solutions

ound for the on- and off-periods:

evOFF
e (0+) − CivOFF

i (0+) = CevON
e (0−) − CivON

i (0−) (32)

q. (27) is valid in the whole off-period, such that

OFF
i (0+) = −vOFF

e (0+) (33)

nd therefore,

OFF
e (0+) = ve0 = CevON

e (0−) − CivON
i

(0−)

Ce + Ci
(34)

Now the question of finding ve0 is transformed to the task of find-
ng the final values of ve and vi in the on-period, which brings us
ack to finding k1 and k2 for the solution in the on-period, and this

nsights helps us wrapping it all together in the steady-state solu-
ion, meaning that we have a state where the physical quantities
epeat themselves periodically.

.3. Steady-state solution

At this point, we introduce the duty ratio D, which is the ratio
f time for applied pulse to the period Ts Fig. 4 clarifies. With this
efinition, the following expressions are valid:
on = DTs = D

fs
(35)

off = Ts − ton = (1 − D)Ts = 1 − D

fs
(36)
is closed, short circuiting the device. The analysis is general in that the on- and
off-periods must not be of the same length. For this purpose, the duty ratio D is
introduced.

fs is the switching frequency (fs = 1/Ts). Previously, it has been
reported that a D of 0.5 (mark space ratio of 1) is the optimum in a
pulsed dc scheme (experimentally found) [10], but in this analysis,
we aim for a more general solution of the circuit.

With these definitions, we can write the final value of the voltage
in the off-period the following way:

vOFF
e (toff ) = CevON

e (0−) − CivON
i

(0−)

Ce + Ci
e−(1−D)/fs�OFF (37)

Only when a short-circuit step voltage is enforced directly on
the terminals of the coalescer, will the voltages across either of the
layers change in a step. In the scheme that is actually used, there
is a resistance between the voltage source and the coalescer, and
therefore the voltages ve and vi will not change instantaneously
when we go from the off- to the on-period. In other words, the
initial values of these two voltages in the on-period will equal the
final values in the off-period. If we move the instant t = 0 to the
beginning of the on-period, we can then write:

vON
e (0) = CevON

e (DTs) − CivON
i

(DTs)

Ce + Ci
e−(1−D)/fs�OFF

= Re

R + Ri + Re
Vdc + k1 + k2 (38)

Following a similar line of reasoning for vi, we find:

vON
i (0) = CivON

i
(DTs) − CevON

e (DTs)

Ce + Ci
e−(1−D)/fs�OFF

= Ri

R + Ri + Re
Vdc +

(
RCe

�1
− R + Re

Re

)
k1+

(
RCe

�2
− R + Re

Re

)
k2

(39)

In these expressions, ve and vi are given by Eqs. (22) and (24), respec-
tively.

We now have two equations in the two unknown coefficients
k1 and k2. These are solved in a straight forward manner, but since
the actual algebraic expressions that result are rather large, it is left
to the interested reader to derive them. It should be noted that the
constants are functions of the switching frequency fs and the duty
ratio D. With k1 and k2 in place the full expressions for the voltages

in the on-period have been found, and this in turn gives us the initial
value for ve in the off-period, see Eq. (34). Thus, a complete solution
for the steady-state has been derived, including the possibility of
varying the duty ratio (or mark space ratio).



ineerin

5

5

i
i
a
w
f
a
p
t
e
“
t
a
d
r

s
w
c
i
–
B
c
t
i
t
g
r
n
l

i
a
c
i
a
i
r
a
w

n
e
e
e
c
m
w

t
e
a
t
s

5

e

Q

On this basis, it is clear that the mean square of (the variable
part) in the off-period of all these quantities have maximum value
at the same frequency (and duty ratio). This could open up for the
possibility of alternative hypotheses to explain the experimental
data of Bailes.
O.-M. Midtgård / Chemical Eng

. A discussion of the “charge hypothesis”

.1. The charge hypothesis

Bailes found that the mean square of the variable part of Qe−i
n the off-period had a distinct maximum at the same switch-
ng frequency that gave optimum coalescer performance [10]. He
lso showed that the mean square had a remarkable similarity
ith his experimentally determined coalescence parameter at all

requencies that were tested at a duty ratio of 0.5. He formed
hypothesis as to why this happened: charge separation takes

lace during the on-period with negative charge accumulating at
he emulsion–insulation interface and positive charge at the lower
lectrode (in his case bulk water); then, during the off-period,
depending on whether the drops are near the top or bottom of
he oil they pick up negative or positive charges. Since the drops
re mobile, the attraction between unlike charges then causes
rop–drop coalescence and the formation of large drops which
apidly gravitate to the bulk interface” [10].

Experimental work that has been performed more recently,
how that water droplets that come in contact with electrodes
ith non-zero potential are indeed likely to get charged [5]. A

harged equipotential surface, such as the emulsion–insulation
nterface, is – from a macroscopic electromagnetic point of view

equivalent to a charged electrode. However, the system used by
ailes was not a symmetrical system as far as charges are con-
erned; considerably more negative charge would accumulate at
he emulsion–insulation interface than at the emulsion-free water
nterface. (This can be derived from the analysis of Section 3.) From
his it follows that even though droplets near the interfaces may
et charged, one would expect considerably more negative drops
esulting from this phenomenon than positive. Thus, much of the
egative charge would be inactive in the coalescence process fol-

owing Bailes’ argument.
His theory may still be valid, but if so, one may ask whether

t would be better to make a symmetrical coalescer—one that
ctually results in equal amounts of positive and negative free
harge. This could be done by placing the electrodes vertically
nstead of horizontally, and insulating both of them equally. Then
symmetrical situation would exist and an equal amount of pos-

tive and negative charge would be available. This would probably
equire that free water was removed before the coalescer-step,
s, otherwise, the emulsion would be short circuited by the
ater.

However, there is also the possibility that the asymmetry does
ot matter much. One can still envisage that the drops near the
mulsion–insulation interface acquire negative charge. Due to the
lectric field, which in the off-period is directed from the ground
lectrode (below) towards the emulsion–insulation interface, the
harged droplets will move in direction negative electrode. While
oving, they may collide with neutral (or positive) drops in their
ay, and coalescence could occur.

Another issue that was not mentioned in the paper by Bailes, is
hat there are actually two other physical parameters that behave
xactly like the charge in the off-period. As shown below, these
re, in addition to the charge, the voltage across the emulsion and
he conductive current through it. Consequently, they all show the
ame correlation with coalescer performance.

.2. Behavior of charge, voltage and current in the off-period
Eqs. (6) and (27) combined show that the free charge at the
mulsion–insulation interface can be written, in the off-period, as

e−i = (Ci + Ce)ve (40)
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From this and Eq. (29) it is immediately clear that

dQe−i

dt
= −Qe−i

�OFF
(41)

By definition, the time derivative of the free charge equals the
net conductive current flowing into the interface, such that

dQe−i

dt
= iRi

− iRe (42)

where iRi
and iRe are the currents through the resistances Ri and

Re, respectively. Since, in the off-period,

iRi
= vi

Ri
= − ve

Ri
= −Re

Ri
iRe (43)

it follows that

iRe = − Ri

Re + Ri

dQe−i

dt
= Ri

Re + Ri

Qe−i

�OFF
(44)

It is then further easily shown that

diRe

dt
= − iRe

�OFF
(45)

The differential equation for the emulsion voltage has been
derived previously, Eq. (29), and we can now conclude that the volt-
age over the emulsion, the interfacial free charge and the conductive
current in the emulsion all decay in the same manner during the off-
period: exponentially with time constant �OFF. They also have initial
values that are proportional. The initial value for ve has already been
found and is given by Eq. (34). The numerator of this equation is
nothing but the initial value of the interfacial free charge in the off-
period whereas the denominator is a constant; thus the voltage and
the charge are proportional. The initial value of iRe is also propor-
tional to the initial value of ve since iRe is always proportional to ve

through the law of Ohm. The latter fact could of course have been
used to arrive at Eq. (45) more directly; however, its alternative
derivation does in itself give some physical insight and is therefore
used above.
Fig. 5. Mean square of the variable part of the interfacial charge density as a function
of switching frequency and duty ratio with parameters derived from Bailes.
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.3. Calculation of the mean square

Any of the three quantities discussed above can, as shown, be
ritten as Ae−t/�OFF in the off-period, where A is a (negative) con-

tant. At the end of the off-period, there will still be some residual
nterfacial charge, voltage or conduction current in the emulsion,

hich must equal Ae−toff /�OFF . When Bailes found his correlation
etween the mean square of the charge and coalescer performance,
e subtracted this residual part before he calculated the mean
quare. This is what is meant when it is referred to “the variable
art of” in the text above. (Bailes called it “available charge density”
10].) Following this procedure, the mean square is:

1
Ts

toff∫
(Ae−t/�OFF − Ae−toff /�OFF )2dt
0

= A2�OFF fs
2

(e−2(1−D)/�OFF fs − 1) + 2A2fs�OFF (e−2(1−D)/�OFF fs

−e−(1−D)/�OFF fs ) + A2(1 − D)e−2(1−D)/�OFF fs (46)

Fig. 6. Emulsion voltage and interfacial free charge density as functions of
g Journal 151 (2009) 168–175

As can be seen, the mean square is a function of the switching
frequency and duty ratio.

6. Numerical results

Parameters derived from Bailes are used [10]. These are
Vdc = 200 V, R = 100 M�, Ri = 600 G�, Re = 79 M�, Ci = 163 pF, and
Ce = 37 pF. With these particular parameters, Bailes’ experimentally
found optimum frequency was 8 Hz. He also found that the best
duty ratio was 0.5, but this was tested with a switching frequency
of 50 Hz.

In Fig. 5 the mean square given by Eq. (46) is plotted as a function
of switching frequency and duty ratio. To enable a direct compar-
ison with Bailes’ numbers, the mean square of the charge density

is plotted. For this purpose an electrode area of 0.0315 m2, which
can also be derived from Bailes’ paper, was used. Also shown in the
figure is the coordinate of the maximum point of this graph. As can
be seen, the optimum duty ratio (using the mean square criterion)
is actually 0.56, but the difference from a duty ratio of 0.5 is small.

time for three different combinations of frequencies and duty ratio.
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t 50 Hz, the frequency where Bailes experimented with different
uty ratios, the optimum is indeed very close to 0.5.

Fig. 6 shows the periodic voltage across the emulsion (ve) for the
aximum point of the graph in Fig. 5, i.e. for a frequency of 8.3 Hz

nd a duty ratio of 0.56. Also shown is the interfacial free charge. The
ame quantities are calculated for a switching frequency of 50 Hz
nd duty ratio of 0.5, as well as for a switching frequency of 3 Hz
nd duty ratio 0.5.

. Discussion

These pictures clearly illustrate that even though the coalescer
evice itself is short circuited, this does not mean that the electric
eld (voltage) across the emulsion is zero. However, if the switch-

ng frequency is too low, the voltage would be (almost) zero in large
arts of both the on- and off-periods, and the system would be inef-
cient. On the other hand, if the frequency is too high, the electric
eld strength may be relatively constant in value, but never com-
arable in magnitude to the voltage of the source, and the charge
ever builds up to the value that is achieved when the frequency
nd duty ratio is “just right”.

For the latter situation, the dynamics of the system is such that
he magnitude of voltage experienced by the emulsion is compa-
able to the voltage of the source, and at the same time there is
onsiderable variation in the strength over the period. Besides, the
harge builds up to a significant value, and the coalescer discharges
n just the right ratio, such that the charge starts at almost zero (but
ot quite) when the cycle repeats itself.

When there is a large variation over time of the electric param-
ters of the oil that is subjected to the coalescer, one would – on
his basis – also expect a large variation of the performance of such
system.

The picture of the mean square confirms the earlier calculations
iven by Bailes, both in values and shape of the graph as a function
f frequency. However, the expanded analysis presented here also
ncludes the variation with duty ratio, and shows that a duty ratio
f slightly more than 0.5 could have given even better coalescer
erformance at 8 Hz for his system.

The only measure of success for an electrostatic coalescer device
s that it actually increases the separation of water from the emul-
ion. It should be emphasized that the results presented here cannot
e used to predict actual coalescer performance. Ultimately, it
ould be a goal to be able to calculate the increased water mass
ux resulting from subjecting an emulsion with known properties
o a specific electric field profile. However, a necessary step needed
or arriving at such a deep level of understanding, is to be able to pre-
ict the electric field that the emulsion actually experiences from
n applied voltage profile over the device. The contribution of this
aper is that it addresses this question.
. Conclusions

This paper has re-examined and expanded the mathematical
nalysis of the electric field in a coalescer subjected to a pulsed

[
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dc voltage. Emphasis was put on a physical understanding of the
electric field and the build-up of charge in the system, using both
electrostatic field theory as well as circuit analysis. A complete
dynamic solution was derived; the formulas developed give the
periodic steady-state solution for any frequency and duty ratio.

The physical arguments indicate that there must be an optimum
frequency (or frequency range) when a pulsed dc scheme is used.
This is further confirmed by looking at the electric field resulting
from circuit analysis. Thus, a system that is designed for a particu-
lar oil, may fail to operate as expected when subjected to another
oil with different material properties. Therefore, a tuning of the
frequency should be a possibility in such systems.

The further evolution of commercial in-line coalescers are prob-
ably hampered by a lack of understanding of both the micro-scale
particle interactions and a lack of understanding of the electric field
that is actually experienced by the emulsion and thereby the dis-
persed water droplets, which – as we have seen – may be very
different from the voltage applied on the terminals of the system.

It is hoped that the analysis presented in this paper could con-
tribute to a better understanding of the importance of this aspect in
electrostatic coalescer design. The analysis presented gives impor-
tant physical insight, but is limited in practical design in that the
geometry assumed was such that discrete parameters could be
used. With more complicated geometrical structures, analytical
solutions to the field problem may not be found, but approximate
models consisting of networks of lossy dielectrics can be derived.
Such models can be analyzed numerically in circuit simulators if
the analytical approach becomes too cumbersome. In addition, to
optimize the design further in terms of the electric field, software
based on the finite element method can give good answers even for
complicated geometries.
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